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Abstract 

The computation of the collapse loads of discrete rigid block systems, character- 
ized by frictional (nonassociative) and tensionless contact interfaces, is formulated 
and solved as a special constrained optimization problem known as a Mathematical 
Program with Equilibrium Constraints (MPEC). In the present instance, some of 
the essential constraints are defined by a complementarity system involving the or- 
thogonality of two sign-constrained vectors. Due to its intrinsic complexity, MPECs 
are computationally very hard to solve. In this paper, we investigate a simple nu- 
merical scheme, involving appropriate relaxation of the complementarity term, to 
solve this nonstandard limit analysis problem. Some computational results are pre- 
sented to illustrate potentialities of the method. 

Keywords: Limit analysis, friction, mathematical programming. 

1    Introduction 

The analysis of masonry structures has been the subject of a rich literature spanning 

over the last few hundred years, as indicated by Heyman in his classical treatises on the 

subject [1, 2]. Of particular importance is the limit analysis of block structures with a 

'Corresponding author (email: f.tinloi@unsw.edu.au). 

DHC QUALITY INSPECTED, 

DISTRIBUTION STATEMENT A 
Approved for Public Release 

Distribution Unlimited 

{XQpzöb~o(ß- i<^p 



noiiassociative type of contact interface law, typical of the commonly assumed Coulomb 

friction behavior. 

Drucker [3] was perhaps the first to point out the problem of applying the classical 
bound theorems of plasticity to frictional problems, just after, it appears, his student 

Kooharian [4] had described the behavior of segmental arches under hinging only in 

terms of limit analysis. However, without doubt, the precursor of systematic and mod- 

ern computational methods to deal with the collapse load evaluation of block structures 

with nonassociative material is the seminal paper of Livesley [5] who attempted to solve 

the problem as a Linear Programming (LP) problem using the classical lower bound 

formulation of limit analysis. That work also showed that adoption of a simplified as- 

sociated constitutive law not only, as expected, runs the risk of providing an incorrect 

collapse mechanism, but more importantly may give an overestimate of the true collapse 
load. Livesley suggested a "postprocessing" of the results to provide what he believes 

to be a correct mechanism but did not offer any remedy for limit load overestimation. 
Following Livesley's work, which was subsequently extended to three-dimensional block 

systems [6], a number of related investigations have been carried out. Most notable in 

recent years are: the work of Boothby and Brown [7, 8, 9] in establishing stability cri- 

teria based on extremum characterization of some energy functional; experimental and 

theoretical (albeit assuming normality by treating sliding as Drucker's plastic shearing 

analogy) corroboration by Melbourne and Gilbert [10, 11] that frictional considerations 
are especially important in multiring arches; an excellent thesis by Fishwick [12] con- 

cerned with automatic numerical schemes for limit analysis of rigid block structures 
involving nonassociative friction; and, similarly, computer-oriented mathematical pro- 
gramming approaches by Baggio and Trovalusci [13] for carrying out the same task. 

In spite of vigorous research, as illustrated by the foregoing representative achieve- 
ments, the computation of the collapse load under nonassociative slip is still an open 

problem. Fishwick's enumerative method [12] to solve the underlying Mixed Comple- 

mentarity Problem (MCP) — a mathematical program involving a system of orthogonal 
sign-constrained (or complementary) vectors, see e.g. [14] — appears capable of provid- 
ing the absolute (global) minimum collapse load but only for a small number of blocks. 

Baggio and Trovalusci [13], instead of searching for the minimum load factor of an MCP 

as in [12], attempted a direct minimization under complementarity constraints and ex- 
perienced severe computational difficulties for reasonable size block systems. They had 

to resort to an a priori assumption on the distribution of contact forces to achieve con- 
vergence. In fact, they even finally recommend use of an associated law, leading to a 
more tractable (but in our view inappropriate) LP problem. 

The primary objective of the present paper is to outline a simple numerical scheme 

suitable for solving the limit analysis problem for large-scale block structures. Our 
discrete formulation is straightforward; the difficulty lies in its solution. Using a nodal 

approach for ease of automatic assembly of appropriate matrix-vector quantities (rather 
than the perhaps more compact but equivalent mesh formulation), we gather as con- 
straints all governing conditions (statics, kinematics, nonassociative constitution and 



the requirement of positive dissipation by the live loads) associated with our problem 

in point, and set up an optimization problem involving minimization of the load factor. 

By itself, the set of constraints is fully equivalent to the mesh-based MCP considered 

by Fishwick [12], whereas our optimization problem, known in the mathematical pro- 

gramming literature as a Mathematical Program with Equilibrium Constraints (MPEC) 

[16] is in effect another form of the optimization problem considered by Baggio and 

Trovalusci [13]. The feature (and difficulty) of an MPEC lies in the presence ofnoncon- 

vex complementarity constraints, with the consequence that the limit analysis problem 
may have multiple local minima. 

This paper is organized as follows. In the next section, we present the governing rela- 

tions of our discrete model leading naturally, in Section 3, to a number of mathematical 

programming formulations, depending on the associativity assumption. In particular, 
for a nonassociative law, the governing relations yield an MCP whose solution provides 

an upper bound on the collapse load. The search for the best (minimum) load factor can 

be cast as an MPEC. Moreover, when normality is assumed, we also show, using stan- 
dard mathematical programming theory, how the MCP splits into a pair of classical dual 

LP problems. Motivated by simplicity and our recent, successful experiences in solving 
other types of MPEC-related structural problems [17, 18], we then propose (Section 4) 

a numerical algorithm capable of solving the MPEC. The key idea is suitable relaxation 

of the complementarity term. In the following Section 5, we give an idea of the poten- 

tialities of the algorithm by presenting computational results on a number of reasonably 

large problems. Comparative solution times for solving the relevant MPECs, MCPs and 

LPs are provided as well as collapse load values and sketches of collapse mechanisms. 
We also briefly describe the tools and environments used for modeling and solving our 

mathematical programming based problems. Finally, we conclude with some pertinent 
remarks in Section 6. 

A note regarding notation: column vectors are assumed throughout; vectors and 
matrices are denoted by boldface lower case and upper case symbols, respectively; trans- 
position is indicated by the superscript T; a null vector is represented by 0; kinematic 
quantities (displacements and strains) are assumed to be in rate form but are denoted, 
for clarity, without the normal superimposed dot. 

2    Discrete model and governing relations 

The discrete block model we adopt is a popular and often the most appropriate ide- 

alization for masonry-type structures. Its main mechanical features are: rigid blocks; 
contact interfaces that cannot resist tension; provision for blocks to slide (without sep- 

aration, if desired, as required by a nonassociated law) and/or to overturn when some 
limits are reached; and unlimited compressive strength at interfaces. Two comments 
are worthy of note. First, some of these features are assumptions that we have adopted 
rather than shortcomings of the model; it would be easy to incorporate, for instance, 
the ability to carry tension, limited compressive strength and even partial contact at 



the interfaces. Second, as mentioned in [19], such models arc particularly appropriate 

for analyzing ancient, historical masonry structures characterized by a complex system 

of stones either dry-assembled or connected by poor quality mortar. Experimental tests 

[20] validate the use of such a discrete, rather than homogeneous and isotropic, model 
as it was observed that the global behavior of such assemblies is strongly influenced by 

their discrete nature, namely, size, disposition and orientation of essentially rigid blocks 

in frictional-unilateral contact with one another. 
We now proceed to develop the governing equations for our frictional block structure. 

For this purpose, consider the representative discrete model shown in Fig. 1. As in [5], 

we treat the blocks as nodes and the interfaces as elements of a conventional finite 

element discretization. A nodal approach is adopted, in preference to the usually more 

compact mesh formulation [12], for ease of automatic generation of problem data. 
Assume that three degrees of freedom are associated with the centroid of each block. 

In turn, three pairs of equal and opposite stress resultants act at each contact interface, 
leading to the force system shown in Fig. 1 for a typical block j. For each interface, the 
stress resultants are the transverse (shear) force t, the normal force n, and a bending 

moment measure fri (defined as the bending moment m per half the corresponding 

contact length w, i.e. m = m/w). For a model with b blocks and c contacts, let f be the 

3b-vector of applied nodal forces and x the vector of length 3c that collects (in the order 
of contact interface numbering) all stress resultants. Then, equilibrium of the whole 
structure can be expressed, through the constant 36 x 3c equilibrium matrix A (whose 

transpose is known as the "compatibility" matrix), as 

Ax = f = fD + afL, (1) 

where the nodal loads f, as indicated, are conceived as the sum of known dead loads 
fo and unknown live loads af^, in which a is an unknown (scalar) proportional load 
factor that amplifies the known vector fx, of basic live loads. We need not detail the 
calculation of matrix A, but simply mention that this can be automatically carried out 
in conventional finite element fashion through assembly, using say location vectors iden- 

tifying the contact interfaces, of elemental equilibrium matrices pertaining to individual 

blocks. Incidentally, for the model shown in Fig. 1, three block types can be clearly 
identified, namely, a full base-course block with 5 contacts, a full block with 6 contacts, 

and a half block with 4 contacts. 
We now consider the kinematics of the collapse. Let u be the 36-vector of nodal 

unconstrained displacement rates corresponding to the nodal loads f. Also, the stress 
vector (t, n, m) for each contact interface is related (in a virtual work sense) to a strain 
rate vector (7, e, 6) describing, in order, the corresponding relative joint sliding, sep- 
aration and rotation (9 = 6w). We can thus define a 3c-vector q, ordered as for x, 
which collects all such contact strain rates. For the assumed small displacement regime, 

geometric compatibility is then ensured at the structure level if 

q = ATu. (2) 



Crucial to the formulation is a proper description of the constitutive laws that govern 

the behavior of the contact interfaces. This follows [12] classical Coulomb friction laws 

and can be elegantly described in the same fashion as classical plasticity relations (e.g. 

[21, 22]). For a generic contact interface, we can thus, in direct analogy to plasticity, 

define in the space of the static (stress) variables a set of limit (yield) conditions that 
delineate failure due to sliding and/or rocking. For clarity, we map these limit surfaces, 

pertaining to the two types of failure modes, separately as shown in Fig. 2. Any stress 

state contained within the cone formed by the limit surfaces for sliding and rocking 

represents a combination that is considered safe. On the other hand, a stress state on 

a limit surface will lead to a critical condition for which the contact interface is active 

and has developed (or about to develop) positive strain rates. The possible directions 

of such strain rates are also indicated in Fig. 2, for the case of activation in the positive 

quadrants. 
^From Fig. 2, with the angles <f> and ip (the latter normally assumed to be 45°) 

defined as indicated, the limit conditions for a generic z-th contact interface can be 

written explicitly as 

y«+ 

Vs- 

Vr- 

or more compactly as 

(3) 

The nonnegative vector y* can be considered to be a vector of yield functions (with 
subscript s indicating sliding, r rocking, + positive rocking and sliding, and — negative 

sliding and rocking); geometrically it represents a vector of orthogonal distances from a 

stress point to the limit hyperplanes. 
Further, for contact i, the strain rates contained in ql are related (Fig. 2) to the 

respective (obviously) nonnegative resultant strain rates (analogous to plastic multipliers 

in classical plasticity) in zl as follows: 
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qj=W,     z*>0, (4) 

where we have assumed that a nonassociative "flow" law, in accordance with a Coulomb- 
type frictional model, governs sliding behavior (i.e.  the resultant strain rate zs is not 



normal to the sliding limit surface; it is only so if <j>0 = </>, whereas <fi0 = 0 models ideal, 
nonassociated Coulomb friction). Normality, however, is adopted for rocking behavior 

so that the strain rate zr is perpendicular (Fig. 2) to the limit surface for rocking. 
To complete the description of the interface constitutive laws, we need to impose a 

condition on the vectors yz and z1 so that any component of zJ is positive only when 

the stress point lies on the corresponding yield plane. Again, as in plasticity [21], this 

can be expressed through the complementarity relation 

yi7V = 0 (5) 

which also holds componentwise, in view of the nonnegativity of all elements of vectors 

yl and z\ 
Extension of relations (3)-(5) to the whole structure is straightforward. This can 

be done by a simple reinterpretation of the quantities involved as new indexless sym- 

bols, in particular elemental vectors and matrices as appropriate concatenated vec- 
tors and block diagonal matrices, respectively. For example, yT = (y1T .. . ycT), V = 

diag(V\... ,Vc),etc. 
Finally, the last condition needed to describe collapse of the structure requires that 

the displacement rates u, which define the onset of the collapse motion, must cause 

positive dissipation to be produced by the live loads f/,, i.e. f^u > 0. This requirement 

can be conveniently normalized [23] as 

fju = 1. (6) 

3    Mathematical programming formulations 

We are now in a position to formulate precisely the limit analysis problem for frictional 

rigid block assemblages. This is achieved by simply collecting all conditions (statics, 

kinematics, constitutive relations, and positivity of dissipated work) that describe the 
collapse of such systems. Thus, from the relations developed in the previous section, we 
obtain, after some rearrangement, the following system: 

<[ 

-fL      A 

V 

a l 

X 0 

u fb 

z y 0 
(7) 

y > 0,    z > 0,    yrz = 0, 

where dots (.) represent zero quantities (scalars, vectors or matrices) of appropriate 

size.   This particular problem is known is an MCP [14]   a class of mathematical 
programming problems that has been vigorously researched over the last decade or so, 
from both theoretical and computational viewpoints. In fact, apart from the relationship 



yrz = 0, this problem only involves linear relationships amongst the variables and is 

thus called a linear mixed complemenarity problem. However, adaptations of Lemke's 

method [15], the standard technique for linear complementarity problems, is only known 

to process (7) when V = N. In our case, uniqueness of the load multiplier a is not 

guaranteed and any solution of the MCP will yield an upper bound to the collapse limit. 

In the case of fully associated contact laws, however, normality of the resultant 
strain rates are ensured so that V = N, leading to a (skew) symmetric system for MCP 

(7). As is well-known [24], the static and kinematic variables become uncoupled and 

the MCP can be recognized as being the necessary and sufficient optimality (Karush- 

Kuhn-Tucker) conditions of a pair of dual LP problems with common (unique) optimal 

values of a. Mechanically, the LPs are well-known expressions of the bounds theorems 

of plasticity. In particular [23], the LP related to the static theorem is given by 

maximize        a 

subject to       — ail + Ax = ^D, (**) 

-NTx > 0, 

whereas the LP arising from the kinematic theorem is 

minimize — f^u 

subject to       fTu = 1, 
(9) 

-ATu + Nrz = 0, 

z > 0. 

Let us return to MCP (7). Since the collapse limit is not unique, then it would 

be desirable to calculate the minimum value of the set of load factor solutions to the 

MCP. For small-size problems, it may be possible to find the best solution to the MCP 
by exhaustive enumeration [12]. However, this technique is not possible for large-size 

MCPs. A better solution is to attempt a direct minimization (e.g. [13]). This can be 

posed as the following optimization problem: 

minimize a 

subject to flu = 1, 

-Aru + VTz = 0, 

-afj + Ax = f#, 

y = -NTx, 

y > 0,    z > 0,    yTz = 0, 

(10) 



which is a special case of an MPEC [16] in which the equilibrium system takes the 

form of a complementarity condition. Clearly, the constraints in (10) are exactly the 

MCP given by (7). At variance with Baggio and Trovalusci [13], we do not attempt to 

simplify the constraints of the MPEC (as they do through a Gauss-Jordan transform) 
since we intend to use sophisticated mathematical programming tools (modeling systems 

and associated solvers) to automatically carry out the reduction and account for any 

sparsity patterns. 
Finally a note regarding MPECs is appropriate. Whilst an extensive theory of first 

and second order optimality conditions for MPECs has been developed in [16], still 
relatively little is known about the numerical solution of practical, large-scale MPECs 

likely to arise in realistic applications. The most prominent feature of an MPEC, and 

one that distinguishes it from a standard nonlinear program, is the presence of comple- 

mentarity constraints. These constraints classify this class of mathematical programs 

as a nonlinear disjunctive (or piecewise) program and therefore carries with it a "combi- 

natorial curse". This makes it very difficult to solve, especially if one wishes, as ideally 
required in the present instance, to compute a global optimal solution. A branch-and- 

bound technique can be adopted to perform an exhaustive enumeration in the search 

for a global optimum, but, as mentioned, is obviously severely limited in the size of 
problem it can handle. Nearly all methods proposed to date [16] are aimed at finding 
stationary solutions and/or local optima, and are categorized roughly by the way the 

complementarity condition is handled. 

4    A relaxation algorithm for solving the MPEC 

We propose, in the following, a simple and intuitive reformulation of (10) involving 
the use of standard, readily available nonlinear programming (NLP) solvers. A pri- 

mary motivation behind this scheme is to exploit the availability of state-of-the-art and 

industry-standard solvers such as CONOPT2 [25], especially from within the powerful 
GAMS (an acronym for General Algebraic Modeling System) modeling environment 
[26] adopted in this work to facilitate the modeling and solution process. 

The attempt to formulate and solve an MPEC as a nonlinear program, it must be 
noted, is carried out in spite of the fact that traditional constraint qualifications are 

never satisfied [16], with the implication that the usual numerical methods for solving 
NLP problems may be expected to have some difficulties in their solution. Also, whilst 
there is no guarantee that the solution provided represents a local minimum to the 

MPEC (let alone a global minimum), we wish to investigate numerically if our simple 
scheme is computationally feasible for large-size structures and can provide reasonable 

solutions in practice. 
As indicated earlier, the difficulty in solving the MPEC lies in the presence of 

the nonconvex complementarity constraints. The basic idea underlying the relaxation 
method for solving MPEC (10) consists in simply relaxing the complementarity term, 
allowing yTz < ß, for some relaxation parameter ji.  The MPEC is thus converted to 



the following standard NLP problem: 

minimize a 

subject to f£u = l, 

-Aru + VTz = 0, 

-afl + Ax — to, 

y = -Nrx, 

y > o,   z > o, 

yTz < p- 

(11) 

The relaxed problem is solved for successively smaller values of fi to force the com- 
plementarity term, which is nonnegative at feasible points of (11), to approach zero. 
The attraction of this method is that each subproblem is a standard nonlinear program 

and general purpose codes such as CONOPT2 [25] can be used. 

An alternative penalty problem method that also solves a sequence of nonlinear 

programs has been successfully used in solving some minimum weight [18] and parameter 

identification problems [17]. This technique could also be used in this case, although 
some limited computational testing showed the relaxation method to perform better on 

the class of problems described here. 
The following pseudocode further clarifies the algorithm: 

Set initial fj. (e.g.   10~3), maximum number of iterations (maxiter), and solve the 

MCP (7) to determine initial values for the variables, 

for i = 1 to maxiter 

if yrz < 10"10 exit 
solve nonlinear program (11) 

set \x — ß/2 

end 

At the start of the solution, we solve the MCP (7) to determine initial values for the 

problem variables. The remainder of the algorithm can be considered as a local neigh- 

bourhood improvement mechanism. At the solution of the MCP, the complementarity 
error is zero. The algorithm relaxes this constraint, allowing the nonlinear programming 
code to search in the neighbourhood of the given complementary point for a point with 

better objective value. Typically, a new point is found that has a lower value for a but 

which is no longer complementary. The algorithm then slowly drives the parameter /J, 

to zero to recover a new complementary solution. Since a modeling language efficiently 

implements restarts from a given solution, the nonlinear programs are typically solved 
fairly quickly. Whilst this heuristic does not guarantee a global minimum, our compu- 



tational experiments indicate that improvements on the collapse limit can be achieved 

in some instances. 

5    Computational results 

In this section, we report on some computational results concerning the limit analyses 

of block assemblages. We implemented the models within the GAMS mathematical pro- 

gramming modeling environment and solved them using various GAMS solvers. Before 

detailing our results, a note concerning both GAMS and the solvers we used would be 
useful. For more detailed information on GAMS and its associated solvers, the interested 

reader is referred to the GAMS Corporation website: http://www.gams.com. 

It is commonly stated that data manipulation requirements limit mathematical pro- 

gramming applications more than optimization requirements. The typical end-user is 

generally more concerned with model formulation, representation and solution than 
with the details of the mathematical techniques involved. There is thus a strong case 

for making the solution phase as simple as possible while at the same time allowing for 

easy construction of large and complex models. This aim provided the impetus for the 

development of modeling languages of which GAMS is one. 
GAMS [26] had its origin at the Development Research Center of the World Bank in 

Washington. It is a high level declarative language for formulating small to very large 

mathematical programming models using simple and concise algebraic statements which 

mirror the actual mathematical constructs involved. A GAMS model is transparent to 
both human and computer, is easily modified and moved across different computing 
platforms from notebooks to mainframes, and is independent of the solution algorithm 

of the mathematical programming solvers. It not only frees the model builder from 
the burdens imposed by the solution phase but also takes over the steps required for 
generation of the model. In addition to providing simplicity and compactness of model 

construction, it possesses important capabilities such as an internal efficient sparse data 

representation and automatic differentiation. 
A number of mathematical programming problems types can be solved via GAMS. In 

addition to the LP, MCP and NLP models — problem classes which concern the present 
work — solution procedures are available for MIP (mixed integer programming), RMIP 

(relaxed mixed integer programming), MINLP (mixed integer nonlinear programming), 

RMINLP (relaxed mixed integer nonlinear programming) and CNS (constrained non- 
linear systems). GAMS is continually evolving and adapted as new algorithms and 

problem classes have been explored. 
Paucity of space precludes us from detailing the structure and construction of GAMS 

models. We refer the interested reader to the extensive GAMS library of models (from 
such diverse areas as economics, chemical engineering, trade, etc.) accessible from the 
GAMS website, and to [17, 18] for simple examples of GAMS models pertaining to the 

penalty approach for solving an MPEC. Inspection of GAMS models, even by someone 
not familiar with the syntax, will immediately show a close resemblance to the actual 
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formulations, such as the MCP (7). A GAMS file is written using a standard text editor 

and executed through a simple "gams <f ile name>" command. The "solve" state- 
ment (e.g. "solve block using lp maximizing obj" where "block" is the name of 

the model and "obj" is the objective function to be maximized) invokes the appropri- 

ate solver, in this case an LP solver. In our case, we used, from within the GAMS 

(version 2.50.094) environment, GAMS/CPLEX (version 6.0) to solve the LP problem 

(8), GAMS/PATH (version 4.0) to solve the MCP (7) and GAMS/CONOPT2 (version 
2.070F) to solve the NLP problem (11). All three solvers are large-scale, industry- 

standard optimizers. 
CPLEX can solve LP problems using several alternative algorithms (primal simplex, 

dual simplex, or barrier) which are all designed for large, difficult problems where other 

LP solvers fail or are unacceptably slow. The CPLEX solvers have the reputation of 
being exceptionally fast and robust, providing high reliability even for poorly scaled 

or numerically difficult problems. We used the default state-of-the-art modified primal 

simplex [27] option with default settings. PATH is an implementation of a stabilized 
Newton method for the solution of the suitably transformed MCP as a set of nons- 

mooth equations [28, 29]. It uses standard large-scale simplex technology to help in 
the path search for the solution. PATH has become, since its introduction in 1995, the 
standard against which new large-scale MCP solvers are compared. CONOPT2, the 

newer version of an NLP code [25] based on the generalized reduced gradient idea, has 

powerful preprocessing features and maintains feasibility during its iterations, making 
it particularly robust and efficient. 

For our computational testing, we developed a generic GAMS model to cany out 
the limit analysis of two-dimensional block assemblages such as those considered by 
Baggio and Trovalusci [13]. This allowed the three mathematical programming prob- 
lems, namely, LP problem (8), MCP (7) and NLP problem (11), to be solved for various 

structural arrangements of blocks. 
Basic details of all models are: blocks of (full) size 4x1.75 and (half) size 2x1.75; <f> = 

tan-1 0.65; i]> = 45°; </>0 = </> (associated, for LP problems) or dp0 = 0° (nonassociated, 

for MCP and MPEC problems). All blocks are subjected to vertical (downward) self 
weight and horizontal (left to right) live loads, simulating an earthquake-type loading. 

In particular, for each j-th full block iJ
D = (0, —1,0) and f£ — (a, 0,0); and hence for 

each j-th half block f£T = (0, -1/2,0) and i[T = (a/2,0,0). 
All runs were carried out on a Win95-based 333MHz Pentium-II. We report on six 

different sets of runs representing different structural configurations (for conciseness, we 
omit diagrams of initial configurations but give deformed configurations for the MPEC 
runs later) very similar to those in [13]. Table 1 summarizes the results obtained. 
Reported are problem sizes (number of blocks b and number of contacts c), limit loads 
a and total computing time in sees, corresponding to solutions of LP problem (8), 

MCP (7) and NLP (labelled as "MPEC") problem (11). Also, the percentage difference 

(of MPEC limit loads) between MPEC and LP solutions are indicated by the column 

headed "% diff". 
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Table 1: Computational results 

Example 

Size 

b x c 

LP MCP MPEC 

a sees a sees a % diff sees 

1 33 x 83 0.64286 1.5 0.64285 1.3 0.63898 0.6 4.9 

2 55 x 141 0.58000 2.0 0.56368 4.0 0.55742 4.1 9.3 

3 46 x 102 0.37383 1.6 0.31078 1.5 0.31078 20.3 4.8 

4 55 x 116 0.33195 1.7 0.26374 2.0 0.26374 25.9 5.6 

5 61 x 120 0.23964 1.7 0.21584 2.4 0.20863 14.9 6.1 

6 146 x 345 0.34782 5.7 0.29725 35.6 0.29577 17.6 232.0 

The limit loads obtained by solving an MPEC are generally smaller than the corre- 

sponding MCP formulation. In turn, the MCP results are smaller than those given by 
the LP formulation which assumes associativity. We should note, however, that it may 

be possible to improve on the MCP solutions by using different starting vectors, as was 

done in [30] in the context of capturing multiplicity of solutions in quasibrittle fracture 
processes. We have not carried this out; our starting vectors for the MCP runs were set 

to zero in all cases. 
All algorithms were run using their default parameters, and the relaxation algorithm 

was coded (in GAMS) precisely as indicated in the previous section. Even though there 

is no theoretical guarnatee of convergence of the MCP and MPEC approaches for (7) 
and (11) respectively, the codes solved every instance of the problems presented to them. 

We believe that the solution process we outline in this paper, although tailored to the 

problem instance, is generically implemented, and has great potential for use in other 

problems. 
The assumption of associativity (in the LP problems) produced higher collapse loads 

(up to about 25.9% higher for Example 4), but an advantage is that CPLEX can carry 

out the limit analyses very efficiently. Moreover, it is interesting to note that the 
PATH execution times for solving the MCPs are comparable to those of CPLEX for 
the smaller problems (Examples 1-5). For Example 6, CPLEX is about six times 
faster, although in absolute terms PATH can still be considered as being very efficient 

(about 36 sees to solve that example). As expected, the solution of the relaxed NLP 

problems is computationally more demanding, especially in the case of the larger size 

Example 6. However, the absolute times for solving the MPECs arc still remarkably 
good, considering that they include an initial MCP solve (time as indicated under 
the "MCP" column) as well. The computational results are particularly encouraging 

especially in view of the difficulties encountered for similar problems by Baggio and 

Trovalusci [13]. 
The collapse mechanisms extracted from the nonassociated MPEC solutions are 

shown in Figs. 3-8.   These plots (as well as visual checks of input GAMS data) were 
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carried out within MATLAB using a recently developed GAMS-MATLAB link [31]. 

This useful facility enables MATLAB users to access the optimization capabilities of 

GAMS, and allows visualization of GAMS models directly within MATLAB. 

6    Conclusions 

This paper is concerned with an important and difficult class of limit analysis problems 

involving rigid block assemblages in frictional contact. The problem is cast in the first 

instance as an MCP. The search for the best upper bound then leads to an optimization 
problem involving complementarity constraints, or an MPEC. 

Motivated by the need for simple, yet robust, approaches to solve this problem for 

practical, often large-scale structures, we attempt to take advantage of the increased 

availability of advanced and powerful software (and hardware) by proposing a simple 
algorithm with the potential of solving our problem via the GAMS modeling language 

and an associated nonlinear programming solver CONOPT2. 
The algorithm is based on a relaxation approach that attempts to drive the comple- 

mentarity term to zero. Computational testing within the GAMS environment indicates 

the viability of this approach. Comparison with the results of an MCP formulation shows 
that the MPEC formulation is likely give better solutions, albeit at some computational 
expense. Assumption of associativity leads to easy to solve LP problems but furnishes 

higher collapse loads, as expected. 
This paper has been primarily concerned with solving the proposed MPEC. Useful 

extensions of the present work, made possible by the positive conclusions reached re- 
garding the MPEC approach, include: extensive parametric studies regarding different 

block sizes and dispositions; consideration of other structural types such as arch bridges; 

modeling of actual masonry-type structures; and extension to three-dimensional struc- 
tures — a task which should pose formal rather than conceptual difficulties. From the 

computational viewpoint, it would be worthwhile to carry out more extensive testing of 
the MPEC algorithm on similar and other problem types, and to investigate use of the 
more efficient MCP formulation, coupled with some robust and efficient search strategy. 

Of course, a challenging goal will always be the search for the global minimum of the 
MPEC, especially for structures with a large number of blocks. 
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